Optics

Light field

Light field notation

2 plane notation

沿从(u,v) 到 (x,y) 光线的辐射: $\overline L(x,y,u,v; z)$

$$E(x,y; z) = \frac{1}{z^2} \iint{\overline L(x,y,u,v; z) \cos^4\phi dudv}$$

$$L(x,y,u,v; z) = \overline L(x,y,u,v; z) \cos^4\phi$$

将$L(x,y,u,v; z) $传播到$L(x,y,u,v; z') $ $\alpha=\frac{z'}{z}$,

$$\begin{array}{l} L(x,y,u,v; z') & = L(x,y,u,v; \alpha z)\ & = L(u+\frac{x-u}{\alpha}, v+\frac{y-v}{\alpha}, u, v; z)\ & = L( u \left(1- \frac{1}{\alpha} \right) + \frac{x}{\alpha}, v \left(1- \frac{1}{\alpha} \right) + \frac{y}{\alpha}, u, v; z)\ \end{array}$$

Transform $LF(x,y,u,v; F)$ to intensity at a depth $\alpha z$, $\Delta z = z'-z = (\alpha-1)z$:

$$\begin{array}{l} T \left{ L(x,y,u,v; z); \alpha \right} & = E(x,y; \alpha z)\ & = \frac{1}{\alpha^2 z^2} \iint{ L( u \left(1- \frac{1}{\alpha} \right) + \frac{x}{\alpha}, v \left(1- \frac{1}{\alpha} \right) + \frac{y}{\alpha}, u, v; z) dudv}\ \end{array}$$

Shear matrix:

$$\begin{array}{l} T(\alpha)= \begin{pmatrix} \frac{1}{ \alpha} & 0 & 1- \frac{1}{ \alpha} & 0 \ 0 & \frac{1}{ \alpha} & 0 & 1- \frac{1}{ \alpha} \
0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \
\end{pmatrix} \end{array}$$

$$\begin{array}{l} T^{-1}(\alpha)= \begin{pmatrix} \alpha & 0 & 1- \alpha & 0 \ 0 & \alpha & 0 & 1- \alpha \
0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \
\end{pmatrix} \end{array}$$

One single plane with angular distribution

沿从(u,v) 到 (x,y) 光线的辐射: $\overline L(x,y, \tan \theta_x, \tan \theta_y; z)$, where $\tan \theta_x = \frac{u-x}{z}, \tan \theta_y = \frac{v-y}{z}$

$$E(x,y; z) = \frac{1}{z^2} \iint{\overline L(x,y,\tan \theta_x, \tan \theta_y; z) \cos^4\phi d\tan \theta_xd\tan \theta_y}$$

$$L(x,y,\tan \theta_x, \tan \theta_y; z) = \overline L(x,y,\tan \theta_x, \tan \theta_y; z ) \cos^4\phi$$

将$L(x,y,u,v; z) $传播到$L(x,y,u,v; z') $

$\Delta z = z'-z = (\alpha-1)z$

Transform $LF(x,y,u,v; F)$ to intensity at a depth $\alpha z$, $\Delta z = z'-z = (\alpha-1)z$:

$$\begin{array}{l} T \left{ L(x,y,\tan \theta_x, \tan \theta_y; z); \Delta z \right} \ = E(x,y; z')\ = \frac{1}{(z+\Delta z)^2} \iint{ L(x + \Delta z \tan \theta_x, y + \Delta z \tan \theta_y, \tan \theta_x, \tan \theta_y; z) d\tan \theta_xd\tan\theta_y}\ \end{array}$$

Shear matrix:

$$\begin{array}{l} T(\Delta z)= \begin{pmatrix} 1 &0 & \Delta z &0 \ 0 &1 &0 &\Delta z \
0 &0 &1 &0 \ 0 &0 &0 &1 \
\end{pmatrix} \ \end{array}$$

$$\begin{array}{l} T^{-1}(\Delta z)= \begin{pmatrix} 1 &0 & -\Delta z &0 \ 0 &1 &0 &-\Delta z \
0 &0 &1 &0 \ 0 &0 &0 &1 \
\end{pmatrix} \ \end{array}$$

Light field operation

  • Projection(or refocusing): from LF to intensity

  • Propagation: through a Lens, with a distance

Camera Simulation

[[ Camera Simulation| Camera Simulation]]

Coded aperture

[[Coded aperture|Coded aperture]]

Light field moment imaging

[[Light field moment imaging|Light field moment imaging]]